Automatically configuring ACO using multilevel ParamILS to solve transportation planning problems with underlying weighted networks

نویسندگان

  • Pengpeng Lin
  • Jun Zhang
  • Marco A. Contreras
چکیده

Configuring parameter settings for ant colony optimisation (ACO) based algorithms is a challenging and time consuming task, because it usually requires evaluating a large number of parameter combinations to find the most appropriate setting. In this study, a multilevel ParamILS (MParamILS) technique, that combines a graph coarsening method and the ParamILS framework, has been developed for configuring ACO algorithms to solve transportation planning problems with underlying weighted networks. The essential idea is to first use the graph coarsening method to recursively produce a set of increasingly coarser level problems from the original problem, and then apply ParamILS sequentially to the coarser level problems to select high-quality settings from a parameter combination domain. From the coarsest level to the finest (original) level problem, the parameter domain is refined by removing the low-quality settings identified by ParamILS. The size of the combination domain continues to decrease, resulting in fewer number of parameter combinations evaluated at finer level problems, hence the computing time is reduced. The performance of MParamILS was compared with ParamILS. Experimental results showed that MParamILS matches ParamILS in solution quality with significant reduction in computing time for all test cases. & 2014 Elsevier B.V. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A multilevel ACO approach for solving forest transportation planning problems with environmental constraints

This paper presents a multilevel ant colony optimization (MLACO) approach to solve constrained forest transportation planning problems (CFTPPs). A graph coarsening technique is used to coarsen a network representing the problem into a set of increasingly coarser level problems. Then, a customized ant colony optimization (ACO) algorithm is designed to solve the CFTPP from coarser to finer level ...

متن کامل

Using Ant Colony Optimization Metaheuristic in Forest Transportation Planning

Timber transportation is one of the most expensive activities in forest operations. Traditionally, the goal of forest transportation planning has been to find the combination of road development and harvest equipment placement that minimizes total harvesting and transportation costs. However, modern transportation problems are not driven only by economics of timber management, but also by multi...

متن کامل

ACO-Based Neighborhoods for Fixed-charge Capacitated Multi-commodity Network Design Problem

The fixed-charge Capacitated Multi-commodity Network Design (CMND) is a well-known problem of both practical and theoretical significance. Network design models represent a wide variety of planning and operation management issues in transportation telecommunication, logistics, production and distribution. In this paper, Ant Colony Optimization (ACO) based neighborhoods are proposed for CMND pro...

متن کامل

Generating Fast Domain-Specific Planners by Automatically Configuring a Generic Parameterised Planner

When designing state-of-the-art, domain-independent planning systems, many decisions have to be made with respect to the domain analysis or compilation performed during preprocessing, the heuristic functions used during search, and other features of the search algorithm. These design decisions can have a large impact on the performance of the resulting planner. By providing many alternatives fo...

متن کامل

Dynamic Multi-Objective Navigation in Urban Transportation Network Using Ant Colony Optimization

Intelligent Transportation System (ITS) is one of the most important urban systems that its functionality affects other urban systems directly and indirectly. In developing societies, increasing the transportation system efficiency is an important concern, because variety of problems such as heavy traffic condition, rise of the accident rate and the reduced performance happen with the rise of p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Swarm and Evolutionary Computation

دوره 20  شماره 

صفحات  -

تاریخ انتشار 2015